Clifford-symmetric polynomials

نویسندگان

چکیده

Based on the NilHecke algebra $\mathsf{NH}_n$, odd developed by Ellis, Khovanov and Lauda Kang, Kashiwara Tsuchioka's quiver Hecke superalgebra, we develop Clifford superalgebra $\mathsf{NH}\mathfrak{C}_n$ as another super-algebraic analogue of $\mathsf{NH}_n$. We show that there is a notion symmetric polynomials fitting in this picture, prove these are generated an appropriate elementary polynomials, whose properties shall discuss text.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Polynomials

f(T1, . . . , Tn) = f(Tσ(1), . . . , Tσ(n)) for all σ ∈ Sn. Example 1. The sum T1 + · · ·+ Tn and product T1 · · ·Tn are symmetric, as are the power sums T r 1 + · · ·+ T r n for any r ≥ 1. As a measure of how symmetric a polynomial is, we introduce an action of Sn on F [T1, . . . , Tn]: (σf)(T1, . . . , Tn) = f(Tσ−1(1), . . . , Tσ−1(n)). We need σ−1 rather than σ on the right side so this is a...

متن کامل

Hyperbolic Polynomials and Generalized Clifford Algebras

We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if −1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, t...

متن کامل

Random symmetric matrices on Clifford algebras

We consider Brownian motions and other processes (Ornstein-Uhlenbeck processes, spherical Brownian motions) on various sets of symmetric matrices constructed from algebra structures, and look at their associated spectral measure processes. This leads to the identification of the multiplicity of the eigenvalues, together with the identification of the spectral measures. For Clifford algebras, we...

متن کامل

BCn-symmetric polynomials

We consider two important families of BCn-symmetric polynomials, namely Okounkov’s interpolation polynomials and Koornwinder’s orthogonal polynomials. We give a family of difference equations satisfied by the former, as well as generalizations of the branching rule and Pieri identity, leading to a number of multivariate q-analogues of classical hypergeometric transformations. For the latter, we...

متن کامل

Symmetric polynomials in physics

We give two examples where symmetric polynomials play an important rôle in physics: First, the partition functions of ideal quantum gases are closely related to certain symmetric polynomials, and a part of the corresponding theory has a thermodynamical interpretation. Further, the same symmetric polynomials also occur in Berezin’s theory of quantization of phase spaces with constant curvature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2023

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2023.2196336